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Analysis of Pump Oil and Alkanes Evaporation 
 

Nathaniel A. Waldstein 

ABSTRACT 

There are many products, including hard drives, which require trace amounts, on 

the order of several mg, of lubricants for proper operation. The following study 

investigated the evaporation rates of pump oil and several alkanes, which have a wide 

range of applications, using a thermogravimetric machine. Both static and dynamic 

temperature tests were conducted. The rate of evaporation of the test specimen was 

determined as the percentage of mass loss per unit time. Using the Arrhenius Equation, 

the activation energy of the evaporation process, Ea, can be calculated as the slope of the 

best fit line for a plot of the ln(k) vs. 1/T (where k represents the rate of the evaporation). 

These values were shown to have good agreement with the enthalpy of vaporization 

calculated from the Clausius Clapeyron Equation and with the activation energy 

calculated using the Freeman and Carroll Method. The alkanes were compared using the 

rate of evaporation and the amount of activation energy required for evaporation as 

model systems. Further investigations were conducted to determine the relationship of 

surface area of the evaporating liquid and the rate of evaporation. It is suggested that the 

surface area is a function that depends on the activation, bonding, and interfacial energies 

of the liquid. However, the wetting angle, which aids in the description of the surface 

area, depends on the surface energy. Subsequent modeling was conducted in an attempt 
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to predict the evaporation characteristics of other lubricants for the purpose of 

comparison.
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CHAPTER 1 

INTRODUCTION TO LIQUIDS EVAPORATION 

1.1 Evaporation 

The conversion process from the liquid state to the gaseous state is what is known 

as evaporation. Liquids do not have to be heated to the boiling point in order for 

evaporation to occur [1-2]. The transition between the two states of matter is 

accomplished by molecules leaving the surface of the liquid. The molecules close to the 

surface of the liquid move in every possible direction at a range of varying speeds. The 

majority of molecules are inhibited by attractive forces within the liquid itself. 

Conversely, when the molecules have sufficient kinetic energy and approach the surface, 

at or near normal, these molecules can escape the liquid [1-2]. Although these molecules 

have broken through the surface of the liquid, many molecules that have evaporated 

reenter the liquid as a result of molecular collisions outside of the liquid. Specifically, the 

net vaporization is the rate at which a liquid converts to a gas. Evaporation can account 

for significant mass losses in an exposed liquid [3]. 

Since evaporation depends on kinetic energy it should be clear that as a liquid is 

heated, the amount of kinetic energy for individual molecules increases the evaporation 

rate. Regardless of temperature, a liquid that is evaporating will always be absorbing the 

latent heat of vaporization. In other words, an evaporating liquid will continuously absorb 

energy that is utilized to break molecular bonds to transform the liquid into a gas. 
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Molecules that successfully evaporate absorb large amounts of energy from the 

surrounding environment, without causing an increase in the temperature of the 

molecules. This results in a reduction of the temperature of the surroundings of an 

evaporating liquid. The rate at which the surrounding temperature reduces depends on 

several factors including the rate in which the molecules leave the surface of the liquid. 

Neglecting the contribution of other factors, an increase in the rate of molecules leaving 

the surface of the liquid will increase the extremity of the temperature reduction. 

Additionally, the molecules that remain within the liquid have lower average kinetic 

energies which results in a reduction of the liquid temperature. Hence, evaporation is a 

cooling process and it is this phenomenon that has been known and exploited for 

centuries. In fact, ancient Greeks and Romans used a method of hanging wet mats in 

windows and doorways to cool homes on hot summer days [1]. Likewise, today similar 

processes to this have been incorporated into many modern refrigeration systems and air 

conditioners.  

 Since evaporation requires the breaking of molecular bonds it is considered to be 

an endothermic process [4-5]. Any change, be it physical or chemical, that absorbs 

energy is termed an endothermic process [6]. How easily a liquid evaporates relates the 

strength of intermolecular bonds [4]. Suffice to say that the stronger the bonding the 

slower the evaporation rate. These bond energies represent the energetic threshold that 

must be met in order to break the specific chemical bond. Since bond energies represent 

an amount of energy absorption they are always positive [6]. Molecular structure dictates 

the strength of the bonds. Similar to bond energy, the amount of energy needed to be 

absorbed to initiate a chemical reaction, evaporation in this case, is known as the 
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activation energy [6]. Lower activation energies generally correlate to faster reactions and 

higher activation energies correlate to slower reactions.  

Evaporation rates differ for different liquids and in addition to the level of 

activation energy required, the rate of evaporation is also determined by such things as 

the concentration of the surrounding gas as well as the liquid itself, the flow speed of the 

surrounding gas, the temperature of the liquid and the surface area of the liquid exposed 

to the environment. If the surrounding gas, generally air, has a high concentration of the 

evaporating liquid or of other substances the rate of evaporation can be significantly 

reduced. Likewise, if there is a high concentration of other substances, impurities, in the 

liquid the rate of the evaporation will also be slowed. As a liquid evaporates it gains a 

higher concentration of solid matter and will hence have a slower evaporation rate. 

Hence, evaporation can alter the intrinsic properties of a liquid; mainly the viscosity, 

density and amount of substances with lower molecular weights [3]. Since density is 

directly proportional to pressure, it too has a significant influence on evaporation rates.  

When the gas in contact with the surface of the liquid increases its velocity, so does the 

evaporation rate, and vice versa. The quality of the surrounding gas also affects the 

evaporation rate. For example, if the air in contact with the surface of the liquid has a 

high humidity then the evaporation rate will be slower than if the air was dry. An increase 

in the temperature of an evaporating liquid will greatly increase the rate of evaporation. 

Another very crucial factor in the rate of evaporation is the surface area of the liquid, that 

is because evaporation is a surface phenomenon; and similar to temperature, an increase 

in the exposed surface area greatly increases the evaporation rate.  
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Since temperature is arguably the most important deciding factor of the rate of 

evaporation, it is worth discussing further. When a liquid is at ambient pressure and at a 

temperature below the normal boiling point it will wet the sides of the container. In this 

condition the liquid will evaporate slowly and relatively steadily. If the temperature is 

increased to the boiling point, tiny vapor bubbles begin forming at the interface between 

the liquid and the container. The number of sites in which these bubbles form increases as 

does the rate of evaporation. That is until a certain temperature is reached above the 

boiling point in which the evaporation rate is at a maximum and any increase in 

temperature from this will actually reduce the rate. This holds true for a liquid that 

experiences a steady increase in temperature,  but not a liquid that is vaporized by a 

dramatic increase in temperature [7]. The general rule when comparing different liquids 

is that the lower the boiling point, the more rapid the rate of evaporation. 

 

1.2 Arrhenius Equation 
 
 The Swedish born scientist, Svante Arrhenius (1859-1927), studied at the 

University of Uppsala and is considered by some to be one of the founders of modern 

physical chemistry [8]. Arrhenius has been referred to as both a physicist and a chemist 

and it is in these capacities that he helped to revolutionize the science of chemistry. Some 

of his early writings investigated what is now called the greenhouse effect. In fact, in 

1896 Arrhenius theorized the magnitude of the greenhouse effect in the London, 

Edinburgh, and Dublin Philosophical Magazine. In this publication he stated: “We are 

evaporating our coal mines into the air.” He added that an increase of the CO2 

concentrations by as little as a factor of two, would increase the average earth’s surface 
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temperature by about 5 °C [6]. Later in his career, in 1903, he became the first Swedish 

person to be awarded the Nobel Prize in chemistry for his works on the ionic theory of 

solution of salts [9]. Several years prior to Arrhenius winning the Nobel Prize he worked 

on what would later become legacy and earn him a right in the history of modern 

chemistry. 

 Arrhenius noted that the majority of chemical reactions need additional energy to 

continue. This energy, specifically heat energy, is added to a system until a 

predetermined threshold is reached and the reaction commences. This threshold is a 

concept that was developed by Arrhenius and is referred to as the activation energy. 

Arrhenius further developed these concepts and combined supportive ideas to formulate 

the Arrhenius equation. Simply, this equation relates the activation energy to the rate of 

the reaction process. Specifically, this equation was derived in order to adequately report 

the effects of temperature on the reaction velocities of gases [8-9]. The Arrhenius 

Equation was originally derived from the work of the Dutch chemist Jacobus Henricus 

van 't Hoff (1852 – 1911) [8]. In order for Arrhenius to explain simple chemical reactions 

he viewed most processes as simple 1st order reactions that have distinct temperature 

characteristics and obvious activation energies. These reaction fundamentals are obtained 

by plotting the logarithm of the rate of the reaction against the inverse of the absolute 

temperature. This provides a model that relates the reaction rate to temperature. One form 

of the Arrhenius Equation is an integration of the underlying differential equation and is 

presented in the following empiric ion:  al express

k ൌ Aeቀ
E౗
RTቁ      (1) 
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where k is a constant that correlates to the rate of the reaction, Ea is the activation energy 

of the reaction ቀ ௃
௠௢௟

ቁ, T is the absolute temperature, R is the universal gas constant 

(8.314472  ௃
௄ ௠௢௟

  ), and A is the pre-exponential constant, which has the same units as the 

constant k. The units depend on the order of the reaction. For an nth order reaction, the 

shared units are ୫୭୪
భష౤L౤షభ

ୱୣୡ
. However, in this investigation the rate of evaporation was 

measured experimentally and has the units of mass per unit time as does the pre-

exponential constant. Since the activation energy is in a nonlinear form in equation (1) 

problems arise during nonlinear regression. As a result, the logarithm of both sides of the 

equation is taken to yield: 

ln k ൌ lnA െ  E౗
RT

                    (2) 

-20

-18

-16

0.0024 0.0026 0.0028 0.003

60100140

y = -1.3158 - 6066.6x 

ln
 k

T-1, K-1

T, oC

 

െܧ௔
ܴ  

Figure 1. A typical Arrhenius Plot for the calculation of the activation energy, 
Ea, for the evaporation of undecane.  

 
If the activation energy, Ea, and the pre-exponential constant, A, are unchanging 

with temperature then a plot of ln k against the inverse of T will result in a straight line 

whose slope is proportional to the activation energy and offset is logarithm of the pre-
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exponential constant [10]. This can be seen if Figure 1 above. In this example, the slope 

of the linear best fit line multiplied by the negative of the universal gas constant provides 

an estimate of the activation energy of the evaporation. In this case, the activation energy 

of the evaporation of undecane is 50.4 ௞௃
௠௢௟

. Likewise, taking the exponential of the offset 

of the best fit line provides a value of the pre-exponential constant to be 0.27 ௠௚
௦௘௖

. If the 

plot is not linear as previously described, then the activation energy decreases with an 

increase in temperature [8-9]. 

1.3 Clausius-Clapeyron Equation 
 
 The Clausius-Clapeyron Equation is a well-known and frequently used formula 

that characterizes the phase transition between two states of matter; liquid and gas in this 

case. Specifically it relates the heat of vaporization, or enthalpy of vaporization, to that of 

vapor pressure. This equation is named after the prominent German physicist and 

mathematician Rudolf Julius Emanuel Clausius (1822 – 1888) and the French engineer 

and physicist Benoît Paul Émile Clapeyron (1799 – 1864) [11-12]. Both men are 

considered to be founders of the science of modern thermodynamics with their individual 

and contributing works on what is now known as the second law of thermodynamics.  

 Two very important terms should be defined prior to continuing a discussion on 

the Clausius-Clapeyron Equation. The first of which has been used previously in this 

section, and that is the heat of vaporization. According to [13], the heat of vaporization is 

“the amount of heat required to vaporize one gram of a liquid at its boiling point with no 

change in temperature”. More generally, enthalpy is the amount of potential heat in a 

substance and it is proportional to pressure and volume. Therefore, the heat of 

vaporization (ΔH) can be thought of as the energy requirement for the transformation of a 
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given amount of substance, from the liquid to the gaseous state. This value is 

conventionally measured at the normal boiling point of the substance. However, most 

tabulated values are adjusted to a temperature of 298 K. 

 Vapor pressure is “the particle pressure of a vapor at the surface of its parent 

liquid” [13]. To explain further, when a vapor is in thermodynamic equilibrium with non-

vapor phases then the pressure of this vapor is referred to as vapor pressure. Under 

certain circumstances, all liquids and even some solids have the propensity to evaporate 

and transform into the gaseous state. Likewise, all gases, under similar circumstances, 

tend to condense to the original state, be it liquid or solid. For a specific substance at a 

specific temperature there will exist a pressure at which the evaporated gas is 

thermodynamically in equilibrium with the condensed form (liquid or solid). This is 

known as the vapor pressure for the specific substance at that particular temperature. 

Volatile substances are those that have a high vapor pressure at near atmospheric 

pressures. The vapor pressure indicates the required pressure in order to have 

equilibrium, which relates the readiness of molecules to escape from the surface of the 

liquid. Therefore, this equilibrium pressure or vapor pressure is an indicator of the 

evaporation rate of a liquid. 

 Understanding these terms it is now necessary to establish a relationship between 

the heat of vaporization and what is referred to as the pVT behavior of a fluid [14]. The 

most basic relationship approximating the pVT behavior of real fluids was established by 

the Dutch physicist and Nobel laureate Johannes Diderik van der Waals (1837 – 1923) 

[15]. The van der Waals equation c re d in the following form: an be rep sente

p ൌ   RT
Vିୠ

െ  ୟ
Vమ

                    (3) 
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where both a and b are characteristics of the specific substance. Instead of now iteratively 

relating the pVT behavior to that of the heat of vaporization, a more often used method 

that provides a relationship between the heat of vaporization (ΔH) to that of the 

temperature dependence of the vapor pressure (p) will follow.   

 First it should be noted that equation (3) is considered to be valid in a single-

component system (one substance) at equilibrium between vapor and liquid. Analyzing 

the Gibbs energies in this situation reveals that the differential Gibbs energies of the 

saturated liquid and the saturated vapor ar bolically: e equal. Sym

dG୪ ൌ dG୥                     (4) 

The total differential Gibbs energy is provided by the following relationship: 

dG ൌ  െSdT ൅ Vdp       (5) 

where S is the molar entropy, V is the molar volume, T is the temperature, and p is the 

vapor pressure. Combining these two equations provides a relationship between the heat 

of vaporization and the derivative of the vapor pressure with respect to the temperature 

along the saturation curve. This relationship is better known as the Clapeyron Equation 

and the empirical form and its derivation is as follows: 

െS T ൌ   ୥ dp ୪d ൅ V୪dp െS dT ൅ V୥

൫S୥ െ ൯dT ൌ ൫V୥ ୪൯dp S୪ െ V

൬
dp
Td
൰
ୱୟ୲

ൌ  
S୥ െ S୪
୥V െ V୪

 

൬
dp
dT
൰
ୱୟ୲

ൌ  
H୥ െ H୪

TሺV୥ െ V୪ሻ
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ቀ୼S
୼V
ቁ
ୱୟ୲

ൌ   ୼H
T୼V

ൌ ቀୢ୮
ୢT
ቁ
ୱୟ୲

     (6) 

From this equation it can be determined that when both the heat of vaporization and the 

change in volume are positive, the vapor pressure will always increase with increasing 

temperature [14]. Integration of the Clapeyron Equation provides an exact relationship 

that relates the dependence of the vapor pressure on the temperature, in a certain range. 

This range is the region from the triple point temperature to that of the critical 

temperature. This region can be viewed on a phase diagram of the substance. To explain, 

a phase diagram is a plot of pressure against temperature that illustrates the conditions for 

which a given phase of the substance exists [16]. Figure 2 shows an example of a phase 

diagram for water. On this plot there are two important points: the triple point (A) and the 

critical point (C). The triple point determines the necessary temperature and pressure 

needed for all three phases to coexist. The critical point, on the other hand, specifies at 

what temperature and pressure the substance must be in order for a phase boundary to no 

longer exist. Considering a closed system composed of liquid and vapor that is heated; as 

the temperature increases the density of the liquid reduces and the density of the vapor 

increases. The temperature at which the two densities are equal is the critical point. The 

heat of vaporization is zero at and beyond the critical point and the liquid state cannot 

exist passed it [16].  

10 
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Figure 2. Water phase diagram. 

 Returning to the specifics of the Clapeyron Equation; a reduction in the pressure 

the culminating effects of the pVT behavior of the liquid phase becomes increasingly 

insignificant. Understanding this is the basis of the Clausius-Clapeyron Equation. The 

Clausius-Clapeyron Equation is a rather restrictive yet useful method of relating the heat 

of vaporization to that of va p d ta e following form: por ressure an kes th

ln p ൌ  െ ୼H౬౗౦
RT

൅  C      (7) 

where C is a constant of integration. A key simplification inherent to this equation is that 

the volume of the vapor is formulated by the ideal gas equation of state and this volume 

is significant enough, as compared to the volume of the liquid, that the latter has been 

neglected. As previously stated, this equation is often used to estimate the relationship 

between the heat of vaporization and the vapor pressure, and a quick survey of equation 

(7) should relate the ease of these estimations and convey its convention. A result that is 

11 
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inherent to this equation is that for temperatures below the normal boiling point, the 

calculated heat of vaporization will always be higher than the correct values, with an 

associated error of less than 5% [14].  

 Taking a differential form of the Clausius-Clapeyron Equation: 

ୢ ୪୬୮
ୢቀభTቁ

ൌ  െ ୼H౬౗౦
R

          (8) 

and integrating this with the assumption that the heat of vaporization is a constant 

provides: 

ln p ൌ A ൅ B
T
          (9) 

where A is a constant of integration and the variable B is constant. Since the logarithm of 

the vapor pressure is only linear in small range of temperatures, equation (9) will not 

exactly describe the behavior of a substance [17]. There are numerous semi-empirical 

equations that modify the right-hand side of equation (9); a review of which can be found 

in [18]. However, the form of this equation, originally published by Antoine [19], that 

was used in this research t  akes the following form: 

ln p ൌ A ൅ B
T
൅  Cln T ൅ DT ൅ ETଶ   (10) 

where p is the vapor pressure (mm Hg), T is the temperature (K), and the variables A, B, 

C, D, and E are all constants specific to substances and are valid within a determined 

temperature range. This form of the Antoine Equation is more expanded than the general 

form, but both provide accurate representations of substances over a large range of 

temperatures as shown in [20]. 

 The constants of the Antoine Equation, or Antoine Constants, are known and 

tabulated for many substances and tabulated values were used in this research for the six 
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n-alkanes. However, the pump oil that was investigated is was of an unknown 

composition. Therefore the constants are not tabulated and this approach was not used 

with the pump oil . The Antoine constants of the n-alkanes were obtained from [21] and 

can be found in Table 1; along with the valid temperature ranges, and names of each n-

alkane studied. 

Table 1. Antoine Constants and valid temperature range for alkanes. 

Alkanes A B C D E Range (K) 

Undecane 82.923 
 

-5608.5 -27.327 1.05E-02 7.09E-13 
 

247.6 - 638.8 

Dodecane -5.6532 -3469.8 9.0272 -2.32E-02 1.12E-05 263.6 - 658.2 

Tridecane 49.239 -4964.9 -13.769 -2.11E-09 2.59E-06 267.8 - 675.8 

Tetradecane 106.11 -7346.1 -35.195 1.24E-02 -8.40E-13 279.0 - 692.4 

Pentadecane 116.52 -8041 -38.799 1.34E-02 -4.44E-13 283.1 - 706.8 

Hexadecane 99.109 -7533.3 -32.251 1.05E-02 1.23E-12 291.3 - 720.6 

 

From Table 1 it can be seen that the maximum low temperature that is considered valid 

for all the alkanes is 291.3 K or about 18.2 °C. Similarly, the minimum high temperature 

that is valid for all the alkanes is 638.8 K or about 365.7 °C. This means that as long as 

testing is done between 18 and 366 °C, the approximations of the vapor pressure for all of 

the alkanes are valid and reasonably accurate. Since the vapor pressures are first 

estimated then used in the Clausius-Clapeyron Equation to calculate the heat of 

vaporization, this implies that the values of heat of vaporization are also valid and 

accurate within this temperature range.  

 Another method for estimating the heat of vaporization is to use Trouton’s Rule 

[22-23]. Trouton’s Rule is a rough approximation and is mainly used as a quick reference 

to ensure results are close to expected values. Suppose there is a liquid vapor system in 

13 
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equilibrium and the vapor pressure is allowed to reach 1 atm. At this point the liquid will 

boil and completely transform into a vapor once it has absorbed the heat of vaporization 

and the temperature at which this occurs is its normal boiling temperature. The 

approximate relationship between the normal boiling point and the heat of vaporization is 

known as Trouton’s Rule and is as follows: 

୼ு
T್
ൌ 21  ௖௔௟

௠௢௟ ௄
      (11) 

or, 

୼ு
T್
ൌ 87.9  ௃

௠௢௟ ௄
      (12) 

where Tb is the normal boiling point of the substance. Since all the alkanes have well 

documented characteristics it is possible to gain rough estimates of the heat of 

vaporization of each individual alkane based on the tabulated values of the normal 

boiling temperatures. Table 3 lists each alkane and their corresponding boiling 

temperature obtained from [21] and the heat of vaporization estimated by use of 

Trouton’s Rule. 

 

 

 

 

 

 

 

 

14 
 



www.manaraa.com

Table 2. Heat of vaporizat n o es from rou on’s Rule. io  f alkan

T

T t

ΔH ቀ ௞௃
௠௢௟

Alkanes b ሺ°Cሻ ሾ21ሿ ቁ 

Undecane 195.5 41.2 

Dodecane 216.0 43.0 

Tridecane 234.0 44.6 

Tetradecane 253.5 46.3 

Pentadecane 270.5 47.8 

Hexadecane 287.0 49.2 

 

1.4 Alkanes 

 
 Alkanes are organic compounds that only contain carbon and hydrogen atoms. 

They can sometimes be referred to as aliphatic compounds or paraffins. Alkanes are 

considered to be a non-functional group due to a relative unreactive nature and do not 

experience many chemical reactions. All bonds between both carbon atoms (C-C) and 

carbon and hydrogen atoms (C-H) in alkanes are referred to as single, sigma (σ) bonds 

[23]. Sigma bonds are formed from the overlapping of atomic orbitals. The total overlap 

of the bonding orbitals is proportional to the strength of a bond. The two main sources of 

alkanes are crude oil and coal. The primary uses of alkanes are for fuels. The majority of 

alkanes are known as acyclic and acyclic materials are classically divided into two 

separate subcategories: straight chains and branched chains. Straight chains are aptly 

named because they are a straight series of carbon atoms connected to one another. 

Branched chains, on the other hand, have other connective groups of chains of carbon 

atoms that extend off of the original chain. These connective groups are commonly 

15 
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referred to as side chains or simply branches. Figure 3 illustrates both straight chain and 

branched chain alkanes. All of the alkanes that were tested are straight chain molecules. 

 
 

Straight chain 

 
Branched chain 

branch 

 
 

Figure 3. Differences between straight chain and branched chain alkanes. 
 

In addition to acyclic, alkanes can be cyclic in that the carbon atoms form rings. 

These specific alkanes are termed cycloalkanes and since they are of a different type of 

alkane as the research samples they will not be further discussed, but a review of these 

types of alkanes can be found in [24].   

The formulas and structures of alkanes are another example of distinctive 

characteristics. In a given compound alkanes contain the maximum number of hydrogen 

atoms in connection with carbon atoms. It is for this reason that alkanes are deemed 

saturated compounds, because they are saturated with hydrogen atoms. Table 2 shows 

the list of alkanes of this investigation and the associated molecular formula. The 

formulas increase one CH2 unit for every successive alkane. Table 2 is known as a 

homologous series and each separate molecule is known as a homolog. The general 

formulation for alkanes is CnH2n+2 [24]. 

16 
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Table 3. Molecular formulas of alkanes. 

Alkanes Molecular formula Condensed formula Molecular Weight ቀ ௚
௠௢௟

ቁ 

Undecane C11H 156 24 CH3(CH2)9CH3

Dodecane C12H26 CH3(CH2)10CH3 170 

Tridecane C13H28 CH (CH ) CH3 184 3 2 11

T  14 30 3 2 12 3etradecane C H CH (CH ) CH 198 

P  15 32 3 2 13 3entadecane C H CH (CH ) CH 212 

Hexadecane C16 34 3 2 14 3H CH (CH ) CH 226 

 

There are also n hysical and  

other compounds. As mentioned, alkanes consist of only C-C and C-H bonds of which 

the C-C

nd 

ch 

t 

he intermolecular attractions are created by London dispersion (LD) forces [24]. 

When c

 

ma y p chemical properties that set alkanes apart from

 bonds are nonpolar and the C-H are essentially nonpolar. This means that the 

molecules are nonpolar and as such are soluble in nonpolar solvents, like other alkanes, 

and are immiscible in polar solvents, like water. The C-H bond is a fairly strong bond a

since it is considered nonpolar it makes the alkane molecules less reactive than polar 

molecules. Alkanes are less dense than water at room temperature and as a result are 

characterized as hydrophobic compounds. Alkanes are generally chemically inert, whi

allows for stability over long periods of time. Alkanes also have the propensity to reac

with oxygen or burn when presented with a source of ignition; hence, alkanes are used as 

fuels.  

Another characteristic of alkanes resulting from the nonpolarity of the molecules 

is that t

ompared to polar intermolecular attraction forces, hydrogen bonding and ionic 

bonding, LD forces are considerably weaker. Fluctuations in electron densities generate 

transient dipoles, which are responsible for the LD forces. As the molecule increases in

17 
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size so does the significance of the effect of the LD forces. Generally, the lower the 

molecular weight of the alkanes, the smaller the total intermolecular forces are, and if th

total forces are small enough, the alkanes will be a gas at room temperature. Howeve

larger molecules inherently have a larger total of intermolecular forces which are 

necessary for alkanes to be liquids at room temperature. Higher molecular weights result 

in even greater total intermolecular forces and the resulting alkanes will be solids a

temperature. As the molecular weight increases, the intermolecular forces increase 

resulting in a higher boiling point and melting point. Conversely, branched molecules 

often boil and melt at significantly lower temperatures due to decreased intermolecu

forces. This also means that less energy is required by branched molecules to complete

phase transition.
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CHAPTER 2 

EVAPORATION TEST METHODS 

2.1 Testing methods 

There are a number of ways to measure the evaporation rates of substances. When 

measuring characteristics of a substance, or substances, the testing variable that is 

deemed most important is what dictates the method of measurement. In the case of the 

evaporation rate of liquids there are three main variables of importance which are: the 

mperature of the substance, the amount of substance, and the vapor pressure of the 

evaporated liquid.  The following is a f some of the more popular methods 

of determining evaporation rates from these three approaches. 

If the testing vari e most important then a 

ermodynamic principle of evaporative cooling follows. In 

this app

 liquid 

 This information can 

then be used to determine the specific latent heat of the substance. Latent heat is the 

te

 quick review o

able of temperature is determined to be th

method that conforms to the th

roach a cloth or gauze pad is dipped into a container of the testing sample. The 

pad is usually wrapped around a thermocouple prior to the submersion because the

will begin evaporating as soon as it is removed from the container. As soon as the 

thermocouple and soaked gauze pad are removed from the container the liquid begins 

evaporating and as discussed in section 1.1 it will also begin cooling. Monitoring the 

cooling rate of the substance, exposed to normal ambient conditions, provides a 

temperature profile of the evaporation process of the substance.
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amount of energy absorbed during a phase transition, evaporation in this case. Knowing 

such tabulated variables as the density of the vapor, the thermal conductivity of the liquid 

and the vapor, and together with an understanding of the temperature profile will give the 

specific latent heat of the substance directly. The amount of energy absorbed during a 

phase change is equal to the specific latent heat of the substance multiplied by the mass 

of the sample. Since bond energies can be thought of as the amount of energy required to 

break the intermolecular attractions of a substance than this is a good indication of the 

heat of vaporization and can be representative of the evaporation rate. This procedure is 

very cost effective because the only required equipment is a thermocouple and a 

computer. For repeatable results, the testing must be done in the same ambient conditions 

for every test. For example, the temperature, quality, and velocity of the air in the lab 

must be maintained constant during testing.  For more information on this type of 

evaporation testing please see [4-5]. 

Another approach focuses on the quantity of the sample, or more precisely, the 

amount of loss of the sample with respect to time. This methodology follows the 

principles of thermogravimetrics to estimate the evaporation rate of the sample. This can 

be achieved by a number of techniques and by several different testing apparatuses. In 

temperature. The mass is measured with a highly sensitive device that can detect minor 

changes, on the order of 0.1 μg sensitivity [32]. When the substance is a liquid the mass 

loss represents the amount of the sample that is being evaporated and when the substance 

is a solid the mass loss represents the amount of the sample that is sublimated. As a result 

general, this approach measures the mass loss of the sample continuously with time and 

of monitoring the time lapse in addition to mass loss, the recorded mass loss is easily 
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transformed into a rate of phase transformation (evaporation or sublimation). Depe

on the particular setup, this type of te

nding 

sting can be done in a vacuum or in a sealed 

chambe

5, 

y 

le 

26] a 

ximations of the evaporation rate of the samples. This procedure is less costly than 

the ther

ly 

r with or without a purging gas. Regardless of setup, as before, conditions must 

remain constant between testing runs to ensure repeatability and ultimately comparability 

between samples. This approach requires expensive instrumentation and licensed data 

analyzing software.  For further information on this specific testing approach see [10, 2

32]. 

Yet another way to determine a compounds specific evaporation rate is to directl

measure the vapor pressure of the evaporated liquid. This approach assumes that a liquid 

vapor system in equilibrium will provide necessary information of the evaporation 

process. In this method the sample must be in a closed liquid vapor or solid vapor system. 

The closed system is then evacuated of the trapped air creating a vacuum.  As the samp

evaporates in the vacuum chamber, the vapor pressure can be measured directly by a 

couple of different means; which depend on the particular testing arrangement. In [

wire fed into the vapor portion of the vacuum chamber will change its resistance as the 

vapor pressure changes. This changing resistance can be calibrated by known substances 

to give accurate readings of the changing vapor pressure. Once an accurate vapor 

pressure profile is obtained, the use of the Clausius-Clapeyron equation will provide valid 

appro

mogravimetric approach, but requires the ability to create a vacuum. However, 

since the testing is done in and the readings are taken from a vacuum, then it is very easy 

to maintain constant environmental conditions between testing and is the most readi
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22 
 

lkane 

 

perature profile and the differential temperatures were recorded. 

hermocouples were utilized to measure the temperature of the empty pan and the pan 

nce, as well as the temperature inside the heating 

hambe ed 

 

and 

. 

comparable approach; in terms of direct measurements. A good review of this approach 

can be found in [26-27]. 

 

2.2 Testing procedure 

 All testing followed the same procedure and used the same testing equipment. 

Samples were taken from storage containers using a p200 micropipette, 9 mg for a

testing and 20-25 mg samples were drawn for pump oil tests. The micropipette was then 

used to inject the samples into aluminum pans and the pans were then placed onto a 

microbalance. The pan with the sample was balanced with an empty identical aluminum

pan and the microbalance was zeroed. The particular microbalance used in this 

experimentation has a resolution of 0.001 mg, a range of ± 500 mg, and a maximum 

gross sample weight limit of 1 g. The pans were then heated inside a heating chamber 

with a programmable tem

T

that contained the sample substa

c r. The chamber is isolated from the atmosphere and the inside temperature is us

as a baseline temperature. The difference in temperature of the two pans was then used to

accurately determine the temperature of the sample to within 1 °C. The temperatures and 

the weight of the sample were measured continuously throughout testing runs. The 

testing runs were concluded when the sample was completely evaporated or until the 

heating program ended. The equipment used during testing was highly accurate 

proved to be a very good comparative tool for the evaporation of different substances
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CHAPTER 3 

ALKANES AND OIL EVAPORATION RESULTS 

 
veral 

interest is not obtained. As a result, without proven repeatability results of different 

testing runs and between different samples cannot be compared. 

3.1.1 Repeatability studies  

The most important factors of evaporation measurements have been determined 

by mos

ate 

 vapor 

s 

g 

s constants between 

testing cycles with the exception of the vapor pressures and molecular weight which 

depend on the particular substance being tested. 

3.1 Evaporation measurements  

Evaporation measurements, regardless of the testing approach, depend on se

very important factors. These factors must be held as constant as possible to ensure 

repeatability between testing and comparability between results. Without proven 

repeatable testing the results are invalid and a good understanding of the process of 

t of the literature, specifically [25, 28-31], and our own testing. These factors are 

the initial mass of the samples, the exposed surface area of the samples, the heating r

of the testing procedure, the flow rate of the surrounding gases (if applicable), the

pressure produced by the evaporative process, the molecular weight of the substance

being tested, and the temperature (both the range and the specific temperatures durin

testing). The majority of these factors can be readily maintained a
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The heating rate and temperature are the easiest of the factors to keep constant 

between testing. For a lot of testing apparatuses a testing run must first be established 

prior to testing. This acts as the blueprint of testing that the instrument will follow until 

stopped or the procedure has run its course. The instrument must have certain inputs from 

the use

ng 

es.  

ny 

s 

eating and cooling rates constant at 20 

°C/min and – 30 °C/min, respectively. The pump oil was either experiencing standard 

pan eva  

d 

 

s 

pe 

r such as to what temperature should the sample be heated or cooled to, at what 

rate should this be done, should the sample be held isothermal after reaching this 

temperature, and if so, for how long, etc. Once the user has determined these inputs a 

testing procedure has been established and is entered into the computer. If this procedure 

provides satisfying results then it can become the procedural guidelines for all the testi

and thus the heating rates and temperatures will be the same for the testing of all sampl

Figure 4 illustrates a sample portion of the testing procedure utilized for the ma

tests of the pump oil in different arrangements. The testing was done for over 70 hour

while varying the temperatures but keeping the h

poration or was evaporated from micro-fluidic channels. As Figure 4 shows, the

temperature was held isothermal after each temperature increase or decrease for a perio

of 1 hour. This allowed enough time for the temperature to stabilize before increasing or

decreasing. This is crucial for sampling static temperatures rather than dynamic or rapid 

fluctuations of temperature. Conversely, Figure 5 demonstrates what has been deemed a

static testing. Figure 4 shows a rather rapid increase in temperature to effectively 

evaporate the sample completely in a short amount of time. The time duration of this ty

of testing was generally around 10 minutes. It should be noted that both Figure 4 and 

Figure 5 are plots of the sample temperature with time, not the instrumentation 
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temperature. As a result there are distinct nonlinearities in these two graphs. In Figure 4, 

just after a temperature increase or decrease, obvious temperature oscillations can be 

seen. This is due to a fluctuating sample temperature prior to stabilization at the set 

isothermal temperature. Figure 5, however, has two regions of the graph that are 

nonlinear. The first region is occurs in the first minute of testing and this nonlinearity is 

due to the thermal inertia of the sample. In other words, there is a time delay between 

heating the sample and the sample temperature increasing. The second region of 

nonlinearity occurs at about 6 minutes, for this example, and this correlates to when the 

sample mass is 10 - 20% of the initial mass, depending on the alkane. Once the sample 

has been evaporated completely, the temperature increase of the instrumentation 

increases more proportionally with the empty pan resulting in a nonlinearity and a 

subsequent change in slope. 

60

100

140

5 10 15 20 25 30

T,
 o C

Figure 4. Example of the pump oil testing procedure, temperature profile. 
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Figure 5. Example of the dynamic alkane testing procedure, temperature profile 

The heating rate also has a profound effect on the accuracy of the calculated 

activa if 

the heating rate is too slow then the values of the activation energies are not as repeatable 

[25, 28-31]. From this it can be expected that different heating rates will result in 

different values of activation energy. However, when the heating rate is above 10 °C/min, 

for example, the activation energies will have less deviation. Table 4 displays just that for 

some of the alkanes tested. As Table 4 shows, the heating rates used for different testing 

notice how as the rate increases the conformity of the activation energy calculations 

becomes more acute.  

 
 
 

 
 

tion energies. In general, when a sample is heated using a particular procedure, 
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Table 4. Alkanes activation energy, Ea, calculated for different heating rates 

 

Heating rate 

(°C/min) 

Undecane E

from the Arrhenius Plot. 

a

ቀ ௞௃
௠௢௟

ቁ 

Dodecane Ea

ቀ ௞௃
௠௢௟

ቁ 

Tridecane Ea

ቀ ௞௃
௠௢௟

ቁ 

0.5 51.7 50.1 50.7 

1.0 58.2 57.9 59.4 

3.0 55.2 56.6 56.3 

5.0 56.7 54.4 55.2 

10.0 52.7 54.0 54.5 

20.0 53.0 56.1 54.9 

30.0 51.8 54.4 55.1 

 

As discussed in section 1.1, the heating rate also affects the rate of evaporation. It 

sho  

will evaporat nderstand the dependence of 

the rate of evaporation to that of the heating rate. ass was kept re vely the 

same for e .5 mg. H ensure co etween t

percentage of s loss is pref ach test was conducted in a burn-like procedure in 

which the temperature was ram  the same value of 200 °C, but with varying heating 

rates. The result for undecane can be seen in Figure 5. As expected, faster heating rates 

result in less or the sample to completely evaporate.  

uld be obvious that the higher the rate of temperature increase the faster the sample

e. A series of testing was completed to better u

 The initial m

nformity b

lati

esting the ach test ± 0 owever, to 

e E mas rred. 

ped to

 time f
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Figure 6. Heating rate dependence for undecane. 

 

 The flow rate of the surrounding air also has a dramatic impact on the overall 

evaporation process. For example, Figure 7 shows the difference between the same test 

with and without a cooling fan on. The testing sample was the pump oil and the air flow 

rate of the fan was approximately 25 mL/min, and the temperature testing procedure was 

the same for both tests. Figure 7 illustrates a distinct difference in the use of a fan to 

increase the speed ction 1.1, the 

low rate of the air in contact with the exposed liquid greatly affects the rate of 

 the 

௠௢௟

of the surrounding air. As previously mentioned in se

f

evaporation. Using the linear best fitting lines from Figure 6, it can be determined that

activation energy without air flow is about 83.6 ௞௃  and with air flow is approximately 

௞௃
௠௢௟

59.6   . This equates to a 24  ௞௃
௠௢௟

 reduction in the amount of energy needed to break the 

intermolecular attractions in order for the liquid to evaporate. The pre-exponential 

constant is reduced by an even greater amount. With the 25 mL/min air flow the pre-
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exponential constant is approximately 6.9 ௠௚
௦௘௖

 and without the air flow the pre-ex

constant is closer to 1.4e-4 ௠௚

ponential 

௦௘௖
. This demonstrates just how significant the flow rate of the 

surrounding air is to the characteristics of evaporation. 

-28

-26

-24

-22

-20
No air flowy = 1,928 - 10051x
With air flow

0,0024 0,0025 0,0026

y = -8,9103 - 7165,2x

k
ln

T-1, K-1

 

Figure 7. Comparison of oil evaporation rate with and without air flow.  

 As previously mentioned, the initial mass of the sample is a very important factor 

when attempting to obtain repeatable testing results. To ensure repeatable initial masses a 

micropipette was used. After several testing iterations the lack of accuracy of the 

micropipette was made evident. It was necessary to reset the micropipette each time prior 

to use. However, setting the micropipette to the same value every time did not result in 

the same amount of liquid being retained. It was initial thought that the micropipette was 

taking the same volume of liquid each time, but due to density changes between samples 

the amount of mass changed. This may in fact be true, but upon further inspection, using 

the same alkane resulted in different initial mass measurements. To better explain, a 

series of constant mass testing was conducted in which each alkane was tested numerous 

times using the same micropipette value prior to obtaining the sample. This was repeated 
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for every alkane. The results for undecane, for example, were a maximum value of 9.4 

mg a minimum value of 8.1 mg with an average value of 9.0 mg and a standard deviation 

of 0.5 mg. These variations in initial mass, however small, would ultimately result in 

erroneous calculations of the activation energies of the alkanes. To combat this proble

the data were analyzed by using the amount of mass reduction as a percentage of the 

initial mass per unit time. Simply dividing the instantaneous mass measurement by the 

initial mass reading provides the percentage of the initial mass remaining at a specific 

time. This was done for all the testing of the alkanes and the pump oil. Figure 8 shows a 

graphical representation of this correction result. In this figure there is a plot of the ma

loss as a percentage of the initial mass versus time for every alkane. The alkanes were 

ramped to the same high temperature at a rate of 20 °C/min and this testing procedure

was constant for each testing cycle. Figure 8 provides a good estimation of comparison 

the different alkanes’ evaporation rates.  
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Figure 8. Mass loss as a percentage of initial mass for each alkane. 
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 Finally, the surface area of the exposed liquid is a very important factor that must 

be controlled to promote repeatability and to compare final results. The exposed surface 

area was relatively the same for each alkane and the pump oil because all testing was 

done in aluminum pans of the exact same dimensions. Through repeated use the pans did 

become slightly deformed changing the overall shape of the opening of the pan. This 

change in dimension was determined to have very little effect on the exposed surface 

area. In order to estimate the surface area of the liquid in the pan, the pan dimensions, the 

wetting angle, and the height difference between the liquid at the inner sides of the pan, 

and the c ed from 

e man

s 

the 

 

le. So 

e 

enter of the pan must all be known. The pan dimensions are easily obtain

th ufacturer’s data or can be physically measured. The pans that were used had an 

inner diameter of 5 mm and an inner height of 1.5 mm. The wetting angle came from a 

profile measurement using an optical microscope. The profiles were measured by 

focusing the image of the sample surface in the microscope and noting the position of the 

lens. The sample was then incrementally moved and as the changes in the focal length

were recorded an estimate of the profile of the liquids were obtained. The scanning of 

liquid surface was conducted from the liquid pan interface of one side of the pan to the 

other. From this profile the height difference between the liquid at the sides of the pan 

and the center of the pan could easily be calculated. It is important to take note of another 

simplifying assumption that was used in the calculation of the exposed surface area. This

simplification is that due to close molecular composition and densities of the alkanes it 

has been assumed that the deviation in wetting properties between them is negligib

to gain an average representation of the wetting profiles of the alkanes, tridecane was 

used to calculate the wetting angle and exposed surface area. Tridecane was used becaus
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the average density of the alkanes is 0.758 ௠௚
ఓ௅

 and the average molecular weight is 191 

௚
௠௢௟

, whereas tridecane has a density of 0.756 ௠௚
ఓ௟

 and a molecular weight of 184 ௚
௠௢௟

. 

 

Figure 9. Example of wetting profile of three stages of oil. 

Fig

Figure 9 is a picture of the pump oil in the test pans. From left to right in Figure 9 is an 

example of fresh oil, oxidized oil, and burnt oil. Fresh oil is oil that was taken directly 

from its container and injected into the pan, oxidized oil is oil that has been run through a 

series of heat treatments but has not completely evaporate and burnt oil is oil that 

experienced a rapid increase in temperature and what is left inside the pan are carbon 

deposits.  

ure 10 shows the recorded profile from the optical microscope of tridecane 

with the center point of the pan being at 2.5 mm and 0 mm and 5 mm representing the 

inner surfaces of the pan walls. The recorded data points for the profile have been fitted 

with a fourth order polynomial and the equation can be found in Figure 10. From Figure 

10 it can be determined that the minimum height of tridecane is 0.60 mm and a maximum 

of 1.12 mm. Figure 11 illustrates a similar result for the pump oil. The profile of the 

pump oil yields a maximum height of 1.41 mm and a minimum height of 0.53 mm. 
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Figure 10. Wetting profile of tridecane in a pan.  
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                    Figure 11. Wetting profile of pump oil in a pan. 
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The wetting angles for these two substances were estimated from an averaging of angles. 

In this method the lowest point of the liquid profile is selected as a reference point. The 

angle between this point and the next is determined by simple trigonometric identities. 

The angle of between the second point and the third point is then found. This is repeated 

until the angle between the last two points is recorded. The summation of these angles is 

recorded and the average is calculated. This process is repeated for both sides of the 

minimum point and for both liquids. The average of each side was then averaged with the 

other to give an overall average estimate of the wetting angle for the two liquids. Using 

this approach, the wetting angles for tridecane and the pump oil are 10.55° and 17.71°, 

respectively. As expected the sample with the higher molecular weight, density, and 

viscosity has the higher wetting angle. To better express the difference in the measured 

wetting angles of tr ure 12 is displays 

the profile of tridecane and pump oil superimposed onto the same plot. Notice the 

similarity of the overall shape of the two profiles, but they differ in angle and minimum 

height of the liquid. These nonconformities are due to the differences between the surface 

energies and densities of the two liquids. 

idecane and pump oil Figure 12 was constructed. Fig
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Figure 12. Superposition of the profiles of tridecane and pump oil. 

Another important characteristic that can be evaluated from the profile of the 

liquids is the exposed surface area. This is done by revolving the fourth order 

polynomials around the center point (2.5 mm) and using the following equation fro

[33]: 

௦ܣ ൌ ׬  2π fሺxሻୠ
ୟ  ඥ1 ൅ ሾfԢሺxሻሿଶ

H
e

o
d

 

m 

dx     (13) 

where As represents the surface area of the revolution of the function fሺxሻ between points 

a and b. From this method the exposed surface areas were estimated to be 24.0 mm2 and 

70.6 mm2 for tridecane and the pump oil, respectively. These calculations represent a 

good estimation of the respective initial surface areas. During the evaporation the liquids 

evaporate uniformly over the exposed surface area until the center of the liquid 

completely evaporates. This portion of the sample is the first to completely evaporate 

because it has the least amount of substance. After the center has evaporated the liquid 

continues to wet the sides of the pan and begins to evaporate as a ring of liquid. Figure 13 
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illustrates this process of evaporation that is dependent on the exposed surface area. In 

this figure the dotted line represents the exposed surface of the liquid that is evaporating 

and the solid line is the pan. Notice how the rate of evaporation will vary based on the 

amount of remaining liquid through the height of the wetting liquid, h and h', and that the 

wetting angles, θ, θ', and θ'' should remain the same throughout the evaporation process. 

 

Figure 13. Evaporation process with respect to surface area. 

 This implies that the exposed surface area from which the liquid is evaporating is 

not a constant throughout the evaporation process and is instead some function of the 

wetting angle and the amount of f evaporation 

will re in relatively constant u r resembles 

s been 

Partially evaporated Completely evaporated Initial evaporation

θ 
h θ'' h' θ' 

 liquid. Based on this analysis, the rate o

ntil the profile of the liquid in the conma taine

that of the partially evaporated state from Figure 13 and then the rate of evaporation will 

reduce with time until the liquid is completely evaporated. This can be accounted for if 

testing is stopped when the mass loss is equal to the estimated mass of the cylinder of 

liquid with a height of h. This is approximated by finding the volume of the cylinder of 

liquid and multiplying this value by the density of the sample. Once this mass ha

evaporated then the partial evaporation condition from Figure 13 begins and the rate 

changes significantly. If the wetting angles were assumed to be constant throughout the 

evaporation process then the volume of the liquid that is wetting the pans will also be 
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constant. Using the previously calculated wetting angles and the height difference 

between the maximum and minimum heights of the liquid surface, the area of a two 

dimensional right triangle can be found from trigonometry. These triangles were then 

revolved around the inner surface of the pans, which resulted in the volumetric 

calculations of 0.16 mm2 and 0.78 mm2 for tridecane and the oil, respectively. 

Multiplying these volume calculations by the respective liquid densities results in a good 

estimati e liquids co tting reg

were found to be 0.12 mg and 0.67 mg for tridecane and the oil, respectively. These 

masses correlate to 1.33  and 2.  of  initial masses e and the oil. Since 

these masses are such a small percentage of the initial masses of the liquids it is very 

difficult to determine from the data when the partial evaporation conditions are active. 

Additionally, since there is so little liquid remaining in the pans at that moment and the 

remainder is evaporated very rapidly and the affect it has on the overall evaporation rate 

can be neglected.  

 Understanding how essential factors like the initial mass of the sample, surface 

area, heating rate of the sample, flow rate of air, and the temperature can vary between 

testing cycles is key for establishing repeatable testing procedures. These factors were 

held paramount in establishing all testing procedures. To test the repeatability of the 

alkane testing three undecane burn tests were compared. The results can be seen in Figure 

14. The three tests experienced the same maximum temperature and were heated at the 

same rate. It can be assumed that all three tests had the same exposed surface area and no 

air flow. Since all three example runs were conducted using the same substance, the 

on of the mass of th ntained inside the we ions. These masses 

 % 39 %  the  of tridecan

liquid is at a relatively high temperature, near the boiling point of the substance, the 
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molecular weight remained constant through testing. The factors that proved to be v

cumbersome to maintain as constants through testing cycles were the initial mass and

initial temperatures of the samples.  

ery 

 

-22.4
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-21.6

-21.2

0.0031 0.00315 0.0032 0.00325 0.0033

y = 0.066781 - 6854.8x

y = -0.4086 - 6706.4x

y = -0.24417 - 6750.4x

ln

-1 -1

 k

T , K  

Figure 14. Repeatability results for Arrhenius Plot of undecane. 

Regulating the initial masses was performed by an iterative process involving the 

micropipette and numerous weight measurements. An initial amount of the sample, in 

this case undecane, was taken from its original container by use of the micropipette. This 

value was then measured and recorded. The subsequent tests gained the initial mass in the 

same way however, if the initial mass of less than or greater than the first test by as little 

as 0.1 mg then an iterative process of adding and subtracting mass was conducted to gain 

conformity in the measurements.  

 The initial temperature was an easier variable to control. Essentially all the initial 

samples were at the same ambient room temperature, since they require no special 

storage conditions. The instrumentation setup used was allowed to cool to the same 

temperature prior to start of a new test. These initial instrumentation temperatures were 
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all within 0.2 °C of each other. Table 5 lists the test run and the associated initial masses

(M

 

he 

r each test run.  

Table 5. Repeatability comparison results for undecane. 

Undecane Mi (mg) Ti (°C) A ቀ௠௚
௦௘௖

i) and temperatures (Ti). Additionally, Table 5 lists the pre-exponential values and t

calculated activation energy values fo

ቁ Ea ቀ
௞௃
௠௢௟

ቁ 

Test 1 9.19 26.3 1.1 55.8 

Test 2 9.13 26.1 0.7 54.6 

Test 3 9.17 26.2 0.8 54.9 

   

Table 5 relates the importance of the initial mass and initial temperature on the calculated 

activation energy. From the table the lowest initial mass coincided with the lowest initial 

temperature, which resulted in the lowest calculated activation energy and pre-

exponentia  the 

lues of 

 

Static testing, as it has been termed in this investigation, is a method of testing 

samples over a long period of time at the same temperature. The intent of this type of 

testing is to provide long isothermal periods between incremental increases and decreases 

in temperature to allow for distinguishing between transient changes in the evaporation 

l constant. Likewise, the highest measured initial mass coincided with

highest initial temperature which, as expected, resulted in the highest calculated va

the activation energy and pre-exponential constant. Table 5 also demonstrates the 

remarkable differences in the pre-exponential constant stemming from very small 

changes in initial conditions. However, these variations in calculated values can be 

considered negligibly small and as a result the testing conducted in this investigation has 

been deemed valid and repeatable.  

3.1.2 Static testing  
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rates and actual rates at specific temperatures. As the temperature is increased and 

decreased the evaporation characteristics are recorded during the isothermal periods. 

Increases and decreases in temperature during static testing were done at a very low rate, 

which was pro thod of 

testing proved  e  de e c tics of nes at lower 

level temperatures (25 -75 °C). This is very importan se of th nature of static 

testing. With th nt pro s of th nes su  lower d s, molecular 

 boiling temperatures, as compared to the pump oil, the low temperature data 

points were generally too scattered to retrieve any useful results from a more rapid form 

evaporating and a faster heating rate results in noisy data at lower to atmospheric levels. 

phenomenon can better be described by comparing the static and dynamic test results for 

against the inverse of the absolute temperature. The unfilled circles represents data 

the data points become less uniform and begin to fan out altering the slope of the linear 

fit line.  

grammed by the instrumentation to be 0.001 °C/min. This me

 to be very ffective at fining th haracteris

au

 the alka

y t bec e ver

e inhere pertie e alka ch as ensitie

weights, and

of testing. This is due, in part, to the fact that once the alkanes are exposed they begin 

This is why the static testing procedures were introduced; to give a more complete 

explanation of the evaporation rates of the alkanes for a wider temperature range. This 

one of the alkanes. Figure 15 is such a plot of the logarithm of the evaporation rate 

collected from dynamic testing of hexadecane. Notice how as the temperature decreases 
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Figure 15. Static and dynamic Arrhenius Plot for hexadecane. 

Since the slope of this line is directly related to the activation energy, then another means

of collecting the lower temperature data is necessary for a more adequate and comp

representation of the evaporation rate from room temperature and above. This makes 

static testing an ideal approach for collecting these data. The sample begins testing at 

room temperature (25 °C), where it remains for an extended period of time then it is

heated to a slightly higher temperature and again held isothermal. This is repeated u

predetermined temperature, the temperature at which dynamic testing has been deemed 

valid (usually 60 -75 °C), is reached. This data is then recorded and analyzed by means o

the Arrhe

 

lete 

 

ntil a 

f 

nius equation, just as done with dynamic testing data. The total collection of 

data is then graphed in the same Arrhenius Plot and linear lines are fitted to the separate 

data to approximate the activation energies for low and high temperature level 

evaporation. This type of plot, as shown by Figure 15, provides an expected result: at 

lower temperatures the molecules require more energy to be broken than at higher 

temperatures. From Figure 15 it can be determined that the activation energy for 

-28

-24

-20

-16

0.0022 0.0026 0.003

Dynamic testing
Static testing

y = 1.8941 - 8736.2x
y = 5.6973 - 10136x

ln
 k

T-1, K-1
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hexadecane is about 16.0% higher at a temperature range between 25 °C and 75 °C than 

at higher temperatures. 

Once static testing was determined to be an appropriate means of determining the 

overall evaporation characteristics of the alkanes, all the alkanes were tested with this 

method. Figure 16 shows the resulting Arrhenius Plot for all the alkanes. There are 

several interesting results that can be observed in this figure. Most notably is the shifting 

down and to the left for the higher molecular weight alkanes. This shifting has a two part 

explanation. The downward shifting is representative of an increase in the activation 

energy of the alkanes, as can be seen in Figure 16. This is expected because as the 

molecular weig ties.  ht increases between alkanes so do some essential molecular proper

-28
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-20

0.0026 0.0028 0.003 0.0032 0.0034

U ndecane
D odecane
T ridecane
Tetradecane
Pentadecane
H exadecane

 

 in 

 This 

ln
 k

T -1, K-1

Figure 16. Static temperature testing for all alkanes. 

The density, the molecular weight, and the boiling temperature all increase with

ascending alkane order. As discussed earlier in this work, an increase in such material 

properties requires a greater energy to break the intermolecular attractions. As seen

Figure 16, the shift to the left also seems to increase with ascending alkane order.
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shifting represents an increase in the maximum temperature of the valid static testing 

range. In other words, the higher the alkane ranking the higher the static temperature can 

be reco

r 

he 

 

or the testing itself. The other explanation is that the data were not isolated for the same 

temperature range for each alkane, but rather for the entire valid range specific to each 

individual alkane. This in effect alters the slope of the linear fitted line by averaging the 

lower temperature data with those of the more elevated temperature data. However, after 

creating similar plots for the truncated ranges a similar phenomenon is present. This 

unexpected result is ultimately explained by the sporadic nature of data obtained from 

static testing. 

 
 
 
 
 

rded and remain a valid and accurate representation of the evaporation rate 

characteristics. The activation energies and pre-exponential constants were calculated 

from the linear best fit lines of the data presented in Figure 16 and the results are 

displayed in Table 6. It is interesting to note that all the offsets of the Arrhenius Plots 

were positive numbers resulting in large values of the pre-exponential constants. Also, 

the fact that the activation energies do not increase incrementally as expected, is rathe

peculiar. This could be a result of one of two things, or a combination of the two. T

first possible explanation is that there are errors in the testing, from either the parameters
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Table 6. Activation energies and pre-exponential constants for all alkanes, obtain

 
Alkanes A ቀ

௦௘௖

ed 
from static testing. 

௠௚ቁ Ea ቀ௠௢௟
௞௃ ቁ 

Undecane 5317 79.5 

Dodecane 316.4 74.5 

Tridecane 61.21 72.2 

Tetradecane 2623 85.4 

Pentadecane 3575 89.3 

Hexadecane 182.9 82.9 

 

Even though there are these unexpected fluctuations, there still are some fundamental 

relationships that can be learned from the static testing of alkanes. Primarily, static testing

of alkanes is only valid in the low temperature range. In addition to this, the energy 

required to break intermolecular attractions is greater at lower temperatures. To further 

explain the latter relation, an averaging of the calculated values of the activation energies

for higher heating rates for dynamic testing was done. These averages were then 

compared to the static values for the corresponding alkanes. The percentage of increa

of the activation energies was then obtained for each alkane by this method. Taking the

mean value of 

 

 

se 

 

the percentage increase in activation energy for the alkanes resulted in 

25.7 %. This means that, on average, the required activation energy at lower temperatures 

is 25% greater than what is necessary at higher temperatures. This correlates to a slower 

evaporation rate at lower temperatures, as can be expected. If these results were to be 

generalized to all liquids then it could be stated that liquids near room temperature 

require 25% more energy to break intermolecular attractions (evaporate) than at elevated 

temperatures.  
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ery different conclusions. First, due in larg  of the inher terial properties of 

the oil static testing proved to be the only ethod of nding how the oil 

evaporates. Dynamic testing, in other words,

evaporation of this oi cause rap ating the oi uced very little 

retrievable data. Als g rate a he maximum perature were set too 

high the oil would sim e carbon deposits on the instrumentation. 

Therefore, static testing was preferred and for the pump oil the testing was usually over 

 

 

he 

 

s 

f 

e 

er, the aluminum pans were kept empty in the drift tests. The theory 

Static testing of the pump oil was conducted in a similar fashion, but resulted in 

v e part

viable m

ent ma

 understa

 is not a valid approach for defining the 

l. This is be idly he l prod

o, if the heatin nd/or t  tem

ply burn and leav

60 hours. Testing over such a long time has several benefits and hindrances. The major

benefit of testing for such a long period of time is that a lot of good usable data can be 

calculated. Also, long testing periods provide a chance to fluctuate the temperature to

many different settings gaining a more complete estimate of the evaporation 

characteristics of the oil. The main negative result of such testing is in the accuracy of the 

instrumentation itself. When testing evaporation over such a long period of time t

instrumentation used would suffer from drift. Instrumentation drift is a loss of calibration

that stems from the use of the instrument. As an instrument is used it tends to become les

accurate with time, hence the need for frequent recalibration. However, since testing o

this type cannot be stopped to recalibrate the instrumentation; measurements must be 

taken continuously. To account for instrumentation drift a series of drift tests were 

conducted to determine to what extent the instrument was reducing in accuracy over th

testing period.  

 For drift testing the testing procedure remained exactly the same as the normal 

testing. Howev
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behind this logic is that at the temperatures that were being tested the aluminum would 

not be losing mass, or at least not a measurable amount. Conducting these tests resulted 

in an observed mass loss of the empty pans on the order of 0.5 mg over a 64 hour perio

The extent of this drift can be seen in Figure 17 which is a graph of the measured mas

loss of the oil as compared to the drift results for two test runs. All testing experien

the same temperature controlling procedure and all other conditions were maintained as 

constants. Figure 17 shows a total measured mass loss for the pump oil as about 0.

for the 64 hour testing. The drift testing resulted in a fictitious mass loss around 0.34 mg

which would be a significant percentage of the measured mass loss for oil. Also notice 

from Figure 17 that the mass loss due to drift is represented by a relatively zero sloped 

line until about hour 4. That is why drift corrections are not needed for the static testin

of the alkanes, because they evaporated well within a few hours. 
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Figure 17. Drift test comparison for pump oil. 
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Correcting for drift is necessary prior to analyzing the data. To do this the mass loss due

to drift is simply subtracted from the measured mass loss of the oil. Since the fictitious 

mass losses were recorded as negative values, as a result of drift test calibrations prior to 

testing, the magnitudes of the drift mass loss are added to that of the measured oil mass 

losses continuously for the entire testing period. The series of drifting tests never resulte

in the exact same total mass loss, but the results were close in value and the overall shape

of the mass loss curve. A function was linearly fitted to the instrument drift data and was 

then subtracted from the measured mass loss profile for the pump oil. The result can 

clearly be seen in Figure 18, in which the measured and the actual, after correction, mass 

losses are plotted with respect to time, temperature, and mass. Notice that the mass loss 

profile of the oil maintains a very similar shape but is increased in magnitude. This 

increase is a result of drift corrections of the measured data and ac

 

d 

 

counts for the loss of 

calibration of the instrumentation over the complete testing cycle. 
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Figure 18. Drift correction for pump oil. 
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 After the pump oil data was corrected the activation energy was then calculated. 

The method of calculation utilized the Arrhenius Equation and the related Arrhenius Plot 

for the corrected pump oil data can be seen in Figure 19. As usual a linear best fit line 

was drawn through the data points in order to obtain information on the slope and offset 

of the Arrhenius plot. From this information the activation energy of the pump oil was 

calculated to be 83.6 ቀ ௞௃
௠௢௟

ቁ and the pre-exponential constant to be 6.9 ቀ௠௚
௦௘௖
ቁ.  

-25

-24

-23

-22

-21

0,00235 0,00245 0,00255 0,00265

y = 1,928 - 10051x

ln
 k

T-1, K-1
 

Figure 19. Arrhenius Plot of pump oil for calculating the activation energy. 

3.1.3 Dynamic testing  

Dynamic testing is the measurement of the mass loss of a sample with respect to 

time while experiencing a continuous increase in temperature. The heating rates for the 

series of dynamic tests were 0.5, 1, 3, 5, 10, 20, and 30 °C/min. All the alkanes were 

heated to a maximum temperature of 300 °C at these varying rates. Needless to say that 

all of the alkanes completely evaporated well before the maximum temperature was 

reached. In fact the testing usually lasted less than 15 minutes. As mentioned in the 

previous section, result ble data for higher s from dynamic testing proved to provide sta
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te atures, generally over 60 °C. The main difference between dynamic testing and 

static testing is that in dynamic testing the temperature of the sample is rapidly changing 

allowing no time for it to stabilize in temperature. As a result, dynamic testing never ha

an isothermal condition. Just as in the other testing procedures the temperature and mass 

loss were recorded continuously throughout the testing. Likewise, the recorded data was

analyzed by means of the Arrhenius Equation and were plotted to estimate the

ar best

mper

s 

 

 slopes and 

the offsets of the line  fit lines. Figure 20 is such a graph, displaying the collected 

data and the linear fitted curves to that data for all the alkanes. There is once again a 

pattern of shifting between the alkanes. Figure 20 shows a distinct shift downward and to 

the left for ascending alkanes. The shifting in the downward direction is an expected 

result as it represents an increase in the required activation energy to break intermolecular 

bonds in the increasing order of such properties as molecular weight and boiling point. 

As in static testing the shifting to the left is related to the valid temperature range of the 

data. Although all the alkanes were tested under the same conditions and experienced the 

same  

the alkanes. From Figure 20 it can be deduced that the lower the melting point, for 

instance, the better the low temperature data. Here better refers to data that is more 

consistently repeatable and is m

in Figure 19 that the Arrhenius Plots for dodecane and tridecane are almost on top of each 

other, whereas the other alkanes have more significant spacing between them. This could 

boiling point, density and molecular weight.  

 temperatures, the amount of scatter in the lower temperature data varied between

ore uniform for temperatures less than 60 °C. Also notice 

be because of all the alkanes, dodecane and tridecane have the closet tabulated values of 
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Figure 20. Dynamic temperature testing for all alkanes. 

 Tables 7, 8, and 9 display the resulting calculations derived from Figure 20. Eac

table lists the alkane tested and the associated activation energy calculated from the 

Arrhenius equation. Additionally, the heat of vaporization was calculated by means of the 

Antoine equation for comparative purposes. Table 7 has been compiled from data 

collected at the lowest acceptable heating rate, 10 °C/min. Acceptable in this case is

defined by a heating rate that gives consistently repeatable results. Table 8 represent

data collected from a 20 °C/min heating rate and Table 9 was made from the data 

measured with a 30 °C/min heating rate. These tables show that the measured values for 

each alkane are in close proximity to each other, within 3-4 ቀ ௞௃

 k

T , K

h 

 

s the 

௠௢௟
ቁ. Similarly, the 

theoretical values of the heat of vaporization from the Antoine’s Equation are within a 

similar range for each alkane. Notice from the three tables and comparison of the two 

calculation methods reveals good agreement.  
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Table 7. Comparing Arrhenius to Antoine Equation results for a heating rate of 10 
°C/min. 

 
Alkanes Ea ቀ ௞௃

௠௢௟
ቁ ΔH ቀ ௞௃

௠௢௟
ቁ 

Undecane 52.67 52.01 

Dodecane 54.04 53.67 

Tridecane 54.55 53.17 

Tetradecane 57.06 59.57 

Pentadecane 79.31 78.90 

Hexadecane 73.39 74.46 

 

Table 8. Comparing Arrhenius to Antoine Equation results for a heating rate of 20 
°C/min. 

 
௞௃Alkanes Ea ቀ
௠௢௟

ቁ ΔH ቀ
௠௢௟
௞௃ ቁ 

Undecane 52.95 52.08 

Dodecane 56.10 57.75 

Tridecane 54.91 56.46 

Tetradecane 51.27 53.00 

Pentadecane 73.81 77.38 

Hexadecane 67.45 69.75 
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Table 9. Comparing Arrhenius to Antoine Equation results for a heating rate of 30 
°C/min. 

Alkanes Ea ቀ ௞௃
௠௢௟

ቁ ΔH ቀ ௞௃
௠௢௟

ቁ 

Undecane 51.78 51.22 

Dodecane 54.40 56.83 

Tridecane 55.14 54.16 

Tetradecane 52.60 54.42 

Pentadecane 67.99 68.99 

Hexadecane 70.33 71.72 

 

  

etermined for all testing of higher heating rates, 10 °C/min ater. Since dynamic 

testing proved to be mo ean values are very good 

representations of the actual able 10, which 

have been estimated w lity of 9

Table 10. Average activation energies and pre-exponential constants for all alkanes. 

E

The mean values of the activation energies and pre-exponential constants were 

d and gre

re consistently repeatable, these m

values. The resulting values can be seen in T

ith a reliabi 5%.  

Alkanes a ቀ௠௢௟
௞௃ ቁ A ቀ

௦௘௖
௠௚ቁ 

Undecane 52.5 0.74 0.46 ± 0.11 ±

Dodecane 54.8 ± 1.32 0.45 ± 0.19 

Tridecane 54.9 ± 0.36 0.22 ± 0.04 

Tetradecane 53.6 ± 3.64 0.12 ± 0.12 

Pentadecane 70.9 ± 4.95 9.25 ± 10.46 

Hexadecane 70.4 ± 3.57 4.35 ± 4.01 

 

In addition to the mentioned statistical analysis of the measured data, an error analysis of 

the instrumentation was also conducted. The instrumentation used for the testing, as 

mentioned in the testing procedure section of this work, was found to be very precise. 
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T

calculation of the activation energies is as follows. It was first noted that the activation 

energy can be written as a function of both e of the sample. The 

following empirical equation was used: 

ሺm, Tሻ RTln ቤ
ቀౣ౪

he propagation of errors from the measured variables of mass and temperature to the 

the mass and temperatur

Eୟ ൌ  െ
ቁ

A
ቤ           (14) 

where the ratio of mass, m, to tim ion is kg/sec, T is the 

ature, R is the gas constant (8.314472 J mol-1 K-1) and A is the pre-

expone is 

 

e, t, represents the rate of evaporat

absolute temper

ntial constant found from the previously presented Arrhenius equations. Using th

equation in association with the chain rule in order to obtain the maximum possible error

in the activation energy provides: 

δEୟ ൌ   ቚ
பE౗
ப୫

 δmቚ ൅ ቚபE౗
பT

 δTቚ        (15

which can be simplified as: 

) 

ୟ

which m and T are the m s and temperatures, respectively and δm and δT 

are errors associated with the mass and tem easurements. The mass error was 

found to be 0.001 mg a eratu  fou C. This means that a 

mass measurement of era men sult in the recorded 

values of m ± 0.001 m ropagate through 

 the calculation of the activation energy and as a result must be accounted for. It should 

 

δE ൌ  m δm T δT        (16) ൅  

perature m

        

easured masse

nd the temp re error was nd to be 0.3 °

 m and a temp ture measure t of T will re

g and T ± 0.3 °C, respectively. These errors will p

to

be noted that the error resulting from temperature measurements dominates the total 

propagated error for the activation energy, thus the mass error could be neglected for

simplicity, but was not in the following error analysis. Equation (14) was used to 
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calculate the activation energy as a function of mass and temperature. Then equation (1

was used to calculate the instrumentation error inherent to the calculation of the 

activation energy, also as a function of mass and temperature. The ratio of these errors to 

that of the activation energies were taken

6) 

o

for all the alkanes for both the s es. The resulting 

maximum percentage errors an es and both testing regimes 

nge 

Alkanes 
amic Testing 

 t  provide the percentage error. This was done 

tatic and dynamic testing regim

d activation errors for all alkan

can be seen in Table 11. Notice that as it was related in the procedure section of this work 

the precision of the testing equipment was found to be very high and resulted in a ra

of estimated instrumentation errors of 013 – 0.30 %.  

Table 11. Propagated errors of the activation energies for all alkanes. 

Static Testing Dyn

Ea ቀ
௞௃
௠௢௟

ቁ ஔE౗
E౗

 (%) Ea ቀ
௞௃
௠௢௟

ቁ E౗
 ஔE౗ (%) 

Undecane 79.5 .13 0.253 ± 0.11 0.135 52.5 ± 0

Dodecane 74.5 54 0.268 ± 0.11 0.152 .8 ± 0.15 

Tridecane 72.2 4.± 0.12 0.162 5 9 ± 0.16 0.285 

Tetradecane 85.4 53.6 ± 0.16 0.300 ± 0.11 0.133 

Pentadecane 89.3 70.9 ± 0.15 0.210 ± 0.12 0.137 

Hexadecane 82.9 ± 0.13 0.152 70.4 ± 0.18 0.255 

 

3.2 Mixtures testing  

A series of testing cycles that were not of pure alkanes but rather a mixture of 

them were conducted and rightfully termed mixtures testing. The procedures for these 

tests were the same as the dynamic testing previously described. However, the only 

difference was in the samples being tested. Mixture testing consisted of taking equal 
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volumetric portions of two separate alkanes and thoroughly mixing them in a beaker. 

Once these alkanes were mixed the 50-50 mixture was then transferred from the 

the aluminum testing pans via the micropipette. The data was then processed as before 

using the Arrhenius Equation and constructing the plots. Figure 21 and 22 are two 

Arrhenius Plots constructed from the mixture data for a heating rate of 20 °C/min

°C/min, respectively. In both plots it is easy to see that there is very little spacing 

between mixtures, unlike what was observed for pure substances. It also seems that 

regardless of heating rate the mixtures exhibit evaporation characteristics that most 

closely resemble that of pure undecane. A resulting hy

beaker to 

 and 30 

pothesis is that the molecularly 

lighter s

The slopes of these linear fitt icantly below ane and, to 

a lesser extent, below that of pure undecan pecifi eems to reduce the 

required nerg verc ermolecular attractions below that of 

the values calculated for the pure components of ixture.  

ubstance evaporates first. That is except for the undecane and tridecane mixtures. 

ed li e

e

n s are signif  that o

c mixture s

 f pure t ecrid

e. This s

o activation e y need d to o me int

the m

-23

-21

-17

0,0026 0,003 0,0034

-19

Undecane and doddecane
Undecane and tridecane

y 81,1x= -1,3159 - 61
y = -2,586 - 5808,3x

Undecane and tetradecane

y = -1,0527 - 6329x

ln

Figure 21. Arrhenius Plot of specific mixtures heated at a rate of 20 °C/min. 

 k

T-1, K-1
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-17

-21

0,0024 0,0028 0,0032

Undecane and dodecane
Undecane and tridecane
Undecane and tetradecane

y = -1,4346 - 6140,6x
y = -2,671 - 5736,4x

y = -1,4744 - 6128,7x 
ln

 k

T-1, K-1

 

Figure 22. Arrhenius Plot of specific mixtures heated a rate of 30 °C/min. 

To further elaborate on the results of alkane mixtures Tables 12 and 13 have been 

constructed. These tables present the calculated activation energies and pre-exponential 

constants for both pure testing and of mixtures. Included in the mixture data are the 

averaged values of the activation energies and pre-exponential constants between the two 

pure substances found in the specific mixtures. The second values, after the commas, are 

these averaged calculations. Table 12 represents data retrieved from the 20 °C/min testing 

and Table 13 was constructed from the 30 °C/min data.   

 

 

 

 

 

 

56 
 



www.manaraa.com

Table 12. Comparison between mixtures and pure alkanes heated at 20 °C/min. 

Alkanes Ea ቀ ௞௃
௠௢௟

ቁ A ቀ௠௚
௦௘௖
ቁ 

Undecane 52.95 0.54 

Dodecane 56.10 0.63 

Tridecane 54.91 0.23 

Tetradecane 51.27 0.05 

Un & Do mix 51.39, 54.53 0.27, 0.59 

Un & Tri mix 48.29, 53.93 0.08, 0.39  

Un & Tetra mix 52.62, 52.11 0.35, 0.30 

 

Table 13. Comparison between mixtures and pure alkanes heated at 30 °C/min. 

௠௢௟
Alkanes Ea ቀ ௞௃ ቁ A ቀ௠௚

௦௘௖
ቁ 

Undecane 51.78 0.37 

Dodecane 54.40 0.37 

Tridecane 55.14 0.26 

Tetradecane 52.60 0.07 

Un & Do mix 51.06, 53.09 0.24, 0.37 

Un & Tri mix 47.70, 53.46 0.07, 0.32  

Un & Tetra mix 50.96, 52.19 0.23, 0.22 

 

Comparing the tabulated values in Table 12, the following observations are made: the 

calculated values of the activation energy of the undecane-dodecane and undecane-

tetradecane mixtures are close to the originally calculated value of pure undecane, so it 

seems that the earlier stated hypothesis, that the molecularly lighter substances evaporates 

first, has some merit. However, the undecane-tridecane mixture resulted in a reduced 

activation energy that is less than that of pure undecane. The undecane-dodecane and 

undecane-tetradecane mixtures also have close approximations with the average 
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ac -

tetradecane has the clos e to the c verage tion energy. This 

mixture also has a clos ation betw calculate veraged values of the 

pre-exponential consta ecane-dod mixture resulted in a value of the pre-

exponential constant that is roughly half of the average value a

mixture resulted in a value closer to ଵ
ହ

tivation energies of the pure substances. It should, however  n ted that the undecanebe o

 of activa

 a

er estimat alculated a

e e approxim een th d and

nt. The und ecane 

nd the undecane-tridecane 

 th

 Comparing the results presented in T ws sim th the 

alculated values of the undecane-dodecane and the undecane-tetradecane mixtures 

tridecane mixture resulted in a reduced value activation energy, below that of pure 

undecane. Undecane-d  undecan cane mixtures also resulted in 

reasonably close appro f both the tion energ  pre-exponential 

constants to that of the average values. On the other hand, the values calculated for the 

undecane-tridecane m s than th

average pre-exponen

 From this an ng e m re of alkanes will 

reduce the activation energy needed to break intermolecular attractions and the pre-

 a 

e average.  

able 13 sho ilar results. Bo

c

resulted in activation energies close to that of pure undecane, whereas the undecane-

of the 

deodecane and e-tetra

ximations o  activa ies and

ixture were les at of the average activation energy and 

tial constant.  

alysis the followi conclusions ar ade: a mixtu

exponential constant. The extent of this reduction depends on the properties of the 

components of the mixture and the proportion of the mixture. It can be generalized that 

the reduction of the activation energy is dominated by the component of the mixture that 

has the weaker intermolecular bonds. That is, the mixture resultant values will most 

closely resemble that of the component with the lower boiling point, density, and 

molecular weight. This proves the hypothesis that the molecularly lighter substances of
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mixture will evaporate first. The change in the pre-exponential constant for mixtures is 

much more significant than that of the activation energies. While in some cases the 

activation energy of a mixture can be roughly estimated as the average of the 

components, this is not always true and large errors can result from averaging. Since the 

change in the pre-exponential constant is greater with mixtures this rule is even more 

applicable for these calculations.  

 Another important observation that should be made from these two figures is

dramatic difference in the reported values of the pre-exponential constants between t

static and dynamic testing. The pre-exponential constant, often referred to as the 

frequency factor, is directly related to the frequency of the rate of the reaction. The 

frequency factor is equal to the collision frequency multiplied by the steric factor. T

steric factor is the ratio of the observed frequency factor to that of the calculated colli

frequency. Therefore, the frequency factor, or the pre-exponential constant, is 

proportional to the collision frequency, which represents the average number of collis

between reacting molecules for a un

 the 

he 

he 

sion 

ions 

it of time. This implies that for static testing there are 

ignific

se 

s antly more molecular collisions during evaporation than that which is observed 

for dynamic testing.  

 

3.3 Microchannel evaporation testing  

With the increasing popularity of MEMS devices, testing was also conducted to 

measure the evaporation rate of the pump oil in simulated micro-fluidic channel. The

microchannel tests were designed using all aluminum parts, which consisted of a 

cylindrical reservoir and either a screw threaded or non-threaded plug for the reservoir.  
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Non-threaded Threaded 

 

Figure 23. Pictorial representation of microchannel testing fixtures. 

Figure 23 is a dimensionless pictorial representation of the design of the testing 

fixture used to simulate micro-fluidic channels. On the left side of Figure 23 is the non-

threaded microchannel which is a mating pair of smooth aluminum cylinders. The pump 

oil is first put into the reservoir and then the plug is pressed into the reservoir. This limits 

evaporation to only a thin ring of exposed oil at the top of the reservoir. On the right sid

of Figure 23 is an illus

Oil reservoir 

e 

tration of the threaded microchannel simulation. In this setup the 

e the reservoir and the plug is set into place within the reservoir. 

reads and the reservoir has internal threads. 

After the oil is in place, the plug is th

oil is again put insid

However, in this setup the plug has external th

readed into the reservoir. This limits the evaporation 

to only a small opening at the top of the reservoir, unlike the non-threaded setup, but in 

this design the evaporating oil has to move through the mating threads which is 

analogous to a micro-fluidic channel.  
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Figure 24. Microchannel fixtures: a) Relative sizes; b) Micrograph of a cross-
section showing the microchannel dimensions. 

 
Figure 24a shows both of the microchannel setups and relates the relative size of the 

designs as compared to a 1 Euro coin. Figure 24b is a picture of a cross sectional c

the threaded an 

be seen .  

een 

 

culating 

for these values results in an activation energy of 55.8 ቀ ௞௃
௠௢௟

a) b) 

200 μm 

ut of 

 design. As mentioned, this design simulates micro-fluidic channels and c

 in Figure 24b, which shows an equilateral triangular channel with a 200 μm side

 These two designs were utilized to gain a better understanding of the nature of 

evaporation from micro-fluidic channels. The actual testing followed the same procedure 

as for the static testing of the pump oil described in a previous section of this work. The 

collected data was then analyzed, as before, using the Arrhenius Equation to calculate the 

activation energy and pre-exponential constant for the two setups. Figure 25 is the 

Arrhenius Plot for both conditions with a linear best fit through the data for each. As s

in Figure 25, the threaded design has a much steeper slope than that of the non-threaded 

design and as a result is expected to have higher activation energies. The subtle 

differences of these designs produced dramatically different offsets between the two and

this would correlate to very different values of the pre-exponential constants. Cal

ቁ and 104.5 ቀ ௞௃
௠௢௟

ቁ, for the 
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non-threaded and threaded designs, respectively. Likewise, the pre-exponential constants 

were found to be respectively 1e-4 Hz and 30.8 Hz for the non-threaded and threaded 

designs.  

-23

y = -9,2053 - 6713,8x

-25

-29

-27

0,0022 0,0023 0,0024 0,0025 0,0026 0,0027

Non-threaded
Threaded

y = 3,4274 - 12566x

ln
 k

Figure 25. Arrhenius Plot for both threaded and non-threaded microchannels. 

is 

 

 non-

T-1, K-1
 

As expected, the required activation energy to break intermolecular attractions of the 

pump oil while in a threaded microchannel is much greater than the previously tested 

open surface. However, the non-threaded microchannel the required activation energy is 

much less than that of the open surface and is in fact less than the open surface that 

exposed to a 25 mL/min flow rate of air. This created many questions during analysis and 

to help explain what is happening a comparison graph of the actual evaporation rates was

constructed. Figure 26 is a plot of the evaporation rate (kg/s) of the threaded and

threaded microchannel designs against the temperatures (°C) that the samples were 

exposed to. The data collected during testing was fitted with exponential equations which 

are provided in Figure 26. The overall slope of the non-threaded design is much steeper 
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than that of the threaded one relating that the non-threaded design evaporates much 

faster. 

0
60 80 100 120 140 160 180

5 10-12

1 10-11

1,5 10-11

2 10-11

Non-threaded
Threaded

y = 3,1591e-13 * e (̂0,023594x)
y = 1,4354e-15 * e (̂0,05225x)

R
at

e,
 k

g/
s

T, oC  

Figure 26. Rates of evaporation for threaded and non-threaded microchannels. 

After an examination of Figure 23 it should be clear that the threaded microchannel did

not begin to evaporate u

expected result because the pump oil did not begin to evaporate until similarly elevated 

temperatures and the microchannel has a dramatic reduction of exposed surface area. So 

the same is true for the non-threaded microchannel, but the data provides different 

results. The reason for this is because as the non-threaded plug rests in the reservoir it 

displaces the oil and pushes it up along the sides of the reservoir. In addition to this 

displacement there are capillary forces that can generally be quite significant at these 

small scales and add to the displacing force of the plug. This condition has been theorized 

to create a pooling effect of the oil on top of the plug greatly increasing the exposed 

surface area from what is expected. This layer of oil on top of the plug then evaporates as 

in the case of an open surface, but this surface area is greater than that of the aluminum 

 

ntil the temperature had reached almost 100 °C. This is an 
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CHAPTER 4 

SUMMARY AND FUTURE WORK 

.1 Summary 

The evaporation characteristics have been investigated for alkanes and a pump oil. 

Understanding how a substance will evaporate can be very useful for comparative 

purposes for the selection of the best lubricant for particular applications. It is possible to 

measure both the evaporation rate and the activation energy directly. Either of these 

qualitative results can be used as a comparative tool between different substances. The 

study of the six alkanes resulted in activation energies between 50 and 70 ቀ ௞௃
௠௢௟

4

 

ቁ, whereas 

e pump oil investigation yielded results closer to 84 ቀ ௞௃
௠௢௟

th ቁ. These values are a result of 

dynamic testing, which produces lower and more consistent calculations of the activation 

energies of the alkanes. The alkanes were found to have activation energies between 72 

and 89 ቀ ௞௃
௠௢௟

ቁ, for static testing. The pre-exponential constant changed even more 

significantly between testing procedures. Sta c testing yielded pre-exponential constants 

on the order of several kHz, while dynamic testing resulted in values were in the mHz 

range. This means that there is a higher frequency of molecular collisions during static 

testing than for dynamic testing. Evaporation was also analyzed for pump oil in an air 

flow of 25 mL/min. The resulting calculation of the activation energy turn out to be 59.6 

ti
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ቀ ௞௃
௠௢௟

ቁ, which as expected is a less than the values calculated without an air flow.  

Additionally, a study of the evaporation rate of the pump oil in a microchannel was 

conducted and resulted in an activation energy of 104 ቀ ௞௃
௠௢௟

ቁ. The factors that contribute 

most to variation of the calculation of these results are the exposed surface area, the 

heating rate, the flow rate erties themselves such 

ar weight and boiling point. It was observed that a mixture of equal 

consistently result in the averaging of the evaporation 

rates. T

 

uld 

t 

  

  

4.2 Modeling 

odeling of the rate of evaporation can be very cumbersome because of such 

non-co rs like the surface area which can significantly change with time. 

 of air, and of course the substance prop

as density, molecul

proportions of alkanes did not 

his is because the change in composition is not directly proportional to the change 

in the entropy of the liquid mixture. The testing helped to prove the theory that in a

mixture of alkanes the molecularly lighter substance will evaporate first resulting in 

calculations close to a pure sample of the lighter substance. Future investigations sho

be conducted to gain a further understanding of the importance of the roles that differen

factors have on evaporation. From this added information modeling of evaporation is 

possible and could provide a quick comparative tool of the evaporation of new lubricants.

The m

nstant contributo

Once a specific model has been established it is only valid for the conditions examined 

during the derivation of the model. For this reason the modeling of evaporation must be 

generalized and take into account such factors. This type of modeling is discussed further 

in this section by means of four different approaches. These models are derived from 

similar setups as used in this work, specifically the surface evaporation of a sample inside 
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an open ended container. For the investigation and modeling of evaporation for dro

see [34-37]. 

id sam

୫ୟ୶ܬ ൌ   √ଶ஠MRT

plets 

Beverley et al. [38] measured and derived subsequent models for pure liquids 

with a range of vapor pressures (0.1 – 500 Torr). Liqu ples were investigated while 

partially filling an open ended cylinder that was encompassed by a vertical flowing gas 

stream. The actual evaporation rates were measured as the amount of mass loss from the 

container per unit time.  

First they determined the theoretical maximum rate at which the liquids could 

evaporate. This is accomplished by neglecting such hindering factors as the stagnate layer 

of gases that forms on the surface of an evaporating liquid inhibiting evaporation. Also 

the liquids were assumed to be in constant equilibrium, that is, the number of molecules 

that are hitting and condensing on the surface of the liquid is equal to the number that is 

evaporating. From this the theoretical maximum evaporation in a vacuum is: 

P
     (17) 

where P is the vapor pressure of the liquid, M is the molecular weight of the liquid, R is 

d T is the absolute temperature. The units of the evaporation flux, 

Jmax, ar

the gas constant, an

e ቀ ௠௢௟
௦௘௖௠మቁ; which relates the number of moles of a liquid evaporating per second 

per area of exposed liquid surface. Understanding that the maximum can never be 

reached in practice, a better representation of the real evaporation process was derived. 

 Building from the theoretical maximum Beverley et al. conducted tests intended 

to measure the initial evaporation rates, where the height of the stagnate gaseous layer 

remains constant, and of more volatile liquids, where this height increases with time. T

following relationship between the mass, m, and time, t, is: 

he 
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ݐ ൌ   ோ்୦೟
ெ஺஽௉௭

ሺ݉଴ െ  mሻ െ  RT
ଶ஡MAమDP

ሺ݉ଶ െ mଶሻ   (18଴ ) 

where m  is the initial mass of the liquid at time zero, h  is the total inner height of the 

sample tube, ρ is the density of the liquid, D is the vapor diffusion coefficient, A is the 

surface area of the liquid, and z is the correction factor. This model accounts for 

variations in the evaporation rates of liquids and has been used to determine these 

evaporation rates with an accuracy of a few percent.  

Pichon et al. [39] have studied the evaporation of organic pollutants and have 

formulated a model describing the rate. The testing method was accomplished by means 

of thermogravimetric analysis and takes into account the effect of temperature, total 

external pressure, and heating rates. Testing was conducted with a constant flow of 

Nitrogen, in a temperature range of 20 – 800 °C, and with varying heating rates. The 

model itself is a mathematical representation of non-isothermal evaporation.  

 It was observed that the density of the flux of the pollutants, jfl, was non-uniform 

on the surface of the liquids. This lead to

௙௟଴ 19) 

d 

se 

f each other.  

0 t

 the evaluation of the rate of evaporation, k, for 

the entire surface of the liquids to be: 

k ൌ ׬  ݆ݎߨ2 drோ      (

where r is the radius of the container and the integration is taken from the center of the 

container, where r is zero, to the outer edge , where r is the maximum value R.  

 The authors note that in this model accuracy depends on the accuracy of the liqui

surface area measurement. The calculated areas and what have been termed as adjusted 

areas differed 20 – 30 %, generally, but can be as much as 148 % [39]. Even though the

variations in the calculation of the surface area were significant, the observed and 

predicted values of the evaporation rates were within 10 % o
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 Xia et al. [40] studied th

investigation was operties of 

surfaces and interfaces of complex liquids. This investigation was carried out to gain a 

better understanding of the molecular mechanisms associated with interfacial phenomena. 

The data of this work was obtained by analyzing liquid films on crystalline substrates.  

 The model of this approach stems from the Hertz-Knudsen-Langmuir equation for 

the net evaporation rate [41]. It is an application of the transition state theory, which 

showed good agreement with experiments. Making certain assumptions the transition 

state theory provides the following expression to describe the evaporation rate: 

e evaporation rates of liquid n-alkane films. This 

of the thermodynamic, structural, and compositional pr

k ൌ κ ቀ M
ଶ஠RT

ቁ
భ
మ RT
NA୴౜ୣ

Q౟
Q౟

శ
 e RT

షEశ

    

where κ is the transmission coefficient, N  is Avogadro’s number, v

(20) 

A e 

i i

l: rees of freedom are 

unaffected in the transformation from the

e 

s for a 

f is the free volum

per molecule in the liquid, Q  and Q + are the partition functions for internal degrees of 

freedom of a molecule in the liquid and activated complex, respectively, and E+ is the 

activation energy for evaporation. The authors often made the following two simplifying 

assumptions while applying this mode (1) the molecular deg

 liquid phase to the transition phase, Qi and Qi
+ 

are equal, and (2) E+ = Ev, which identifies the activation energy of evaporation with th

energy of evaporation.  

 This approach yielded many results including the knowledge that molecular 

evaporation mechanisms are cooperative and sequential in nature. Evaporation was also 

determined to be accompanied by marked molecular conformational changes. Another 

important conclusion made by these authors is that the energy required to transport a 

molecule inside the liquid to the liquid-to-vapor transitional region account
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significant amount of the total energy required to transport a molecule inside the l

the vapor state.  

 Stiver et al. [3] presents three separate models for determining the rate of 

evaporation of spilled hydrocarbons and petroleum mixtures. The three methods are tray 

evaporation, gas stripping, and distillation. Tray evaporation is the evaporation from the

iquid to 

 

is 

ly 

e liquid 

at a known and/or measured rate. f evaporation can be 

determined by the following expr

surface of a liquid and since it is the approach most alike to that previously discussed, it 

is the only configuration deemed appropriate. In this configuration the sample liquid 

placed into a tray, ensuring uniform thickness, and the weight of the tray is continuous

monitored. The tray itself is placed inside a wind tunnel and air is passed over th

 From this configuration the rate o

ession: 

k ൌ   சୟP
RT

      (21) 

where P is the vapor pressure of the liquid (Pa), a is the area of the spilled liquid (m ), 

is the mass transfer coefficient under the prevailing wind conditions ቀ
௦௘௖

2 κ 

௠ ቁ, and k is the 

molar flux of the liquid ቀ௠௢௟
௦௘௖
ቁ. 

 This technique and associated model has been described as ideal for measuring 

the rate of evaporation of crude oils by the authors. The authors also note the biggest 

hurdle that must be overcome when analyzing the evaporation rates of crude oils and 

hydrocarbons is linked to multi-component systems. Multi-component systems, also 

known as mixtures, are inherently difficult to express the vapor pressure as a function of 

the changing composition of the mixture. Even with this hindrance the authors have 

reported good agreement between predicted and observed rates of evaporation.  
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 The data collected from testing can be used to compare models and to provide 

valuable information on the actual evaporation rate of the sample substance. The raw data 

these 

 

ୢT

includes continuous measurements of the mass of the sample. If the derivative of 

data were taken with respect to the recorded time then the result is a series of data 

accounting for the amount of mass loss per time. This is the best representative of the rate

of evaporation for a substance under the conditions of the tests. The evaporation rate is 

expected to change with changing temperature, and the form of the relationship of the 

rate of evaporation to the temperature of any given substance can be assumed to have the 

form: 

ୢR ൌ  αR      (22) 

where α is a constant of proportionality. Equation (19) is both separable and linear in the 

following form: 

ୢT
ୢR െ αR = 0      (23

Multiplying both sides of the equation by the integrating factor of ି஑T gives: 

) 

e

ୢ
ୢT
ሾeି஑TRሿ ൌ 0      (24) 

Integrating both sides of the equation (21) and rearranging to a more convenient form 

yields: 

RሺTሻ ൌ  βe       (25) 

the relationship of the evaporation rate with respect to temperature is valid and the values 

can be seen in Figure 27. The data points in this figure have been exponentially fitted and 

஑T

Graphing the evaporation rates against the temperature reveals that this assumed form of 

of β and α can be found from such a graph. The evaporation rates for all of the alkanes 
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the associated equations are included to provide estimations of the α and β values for 

each alkane. As can be expected, the slope of these lines increase with an increase in 

temperature. The changes in the slopes are also more dramatic at higher temperatures fo

the molecularly lighter substances.  
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Figure 27. Measured evaporation rates ve

 These evaporation rates c ared to the theoretical maximum rates of 

ate was 

derived from evaporation in a va

 molecular weight of the  a conversion factor to change the units to 

kg/s. The surface area was previo

molecular weights of the alkanes ted in an earlier section. Figure 28 

presents the results of the calculation of the maximum evaporation rates of all the 

alkanes. This is similar to Figure 24, however the rates are much greater than what was 

T, oC

rsus temperature for all alkanes. 

an be comp

evaporation for comparative purp s e al maximum evaporation ro es. The th oretic

cuum and has been calculated from equation (14). This 

equation provides an estimate of the molar flux and must be multiplied by the surface 

area, the  substance, and

usly determined to be 24 mm2, or 2.4e-5 m2, and the 

 have been tabula
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recorded from experimentations. Note that the theoretical maximum rate of evaporatio

for hexadecane is close to the measured value of evaporation rate of undecane.  
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Figure 28. Theoretical maximum evaporation rates for all alkanes. 

 The previous analysis provides a means of understanding how the rate of 

evap

 

m t ൌ  aଷt ൅ aଶt ൅ aଵt ൅ a଴ (26) 

which is a 3  order polynomial and the coefficients are found experimentally and vary 

based on the units used for the mass measurements and between alkanes. Figure 29 is a 

graph of the recorded mass of the alkanes against time. Fitting a 3  order polynomial to 

these data provides a means of estimating the coefficients needed to understand how the 

mass changes with time between the alkanes under the same temperature profiles. 

oration changes with temperature, but additional information of evaporation is 

needed to develop a more encompassing model. The change of the mass of the sample

with respect to time, as the temperature is increased, has been found from analyzing the 

data collected throughout testing. The mass of the sample as a function of time was 

observed to take the following form: 

ሺ ሻ ଷ ଶ     
rd

rd
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Figure 29. Mass of the alkanes versus time. 

Any model that is used to predict the evaporation rate of a substance must take into 

account the dependency that the mass has on time as well as the dependency that the rate 

has on temperature. The best model for predicting evaporation rates would incorporate 

both of these essential characteristics. 

 

4.3 Testing technique improvements 

After conducting a series of experiments and undertaking this investigative work 

it has been concluded that there are some aspects of the testing techniques that can and 

should be improved upon  such factors as initial 

mass and initial temperatu re ins rumental to 

 in the future. As mentioned previously

re, of both the sample and equipment, a t

able results. The initial mass of thproducing consistently repeat e samples can be 

monitored with the equipment used in this investigation however a greater accuracy of 

initial sample retrieval is needed. As discussed, the micropipettes used to retrieve the 

samples showed a significant variation between repeated measured sample masses. With 
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a more accurate micropipette, or other sampling means, would result in less iterative 

process for setting up tests. This is important so that the evaporation of the sample be 

measured at room temperature prior to an extended exposure time to ambient conditions. 

Another initial condition that proved to be imperative to repeatability is the initial 

temperature of the instrumentation. This was controlled between tests by allowing for a 

long resting period of the equipment to ensure a stabilization of the temperature with 

ambient conditions. To reduce the downtime of the equipment means of controlled 

cooling could be enacted. This could be done by the attaching of fins or running cooling 

lines to the equipment cooling.  

 also 

ing a coil of wire above a sample holder all inside 

 tube. Once a vacuum is created in the tube and heat is applied the resistance of the coil 

ge in vapor pressure. This would be done 

simulta

 

ples. 

 

ular 

 or by less invasive means such as evaporative 

Replacing the equipment or constructing additional testing apparatuses could

improve the testing technique. If the testing were done inside a vacuum then the partial 

pressures could be measured directly and results would not rely on theoretical 

estimations. This could be done by hav

a

of wire will change as a function of the chan

neously with a constant measuring of the mass of the sample. This apparatus 

determines the vapor pressure by the Langmuir method and together with measuring the

mass loss would provide more accurate results of the evaporation rate of a substance. 

Since this apparatus requires the testing of a sample in a vacuum then the maximum 

possible evaporation rates would be recorded and compared between different sam

These results could then be compared to the testing results of this study to determine the

environmental effects on the rate of evaporation. Additional information on this partic

type of apparatus can be found in [42].  
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